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  A BSTRACT  
 The computational prediction of aqueous solubility and/or 
human absorption has been the goal of many researchers in 
recent years. Such an  in silico  counterpart to the biopharma-
ceutical classifi cation system (BCS) would have great util-
ity. This review focuses on recent developments in the 
computational prediction of aqueous solubility, P-glycopro-
tein transport, and passive absorption. We fi nd that, while 
great progress has been achieved, models that can reliably 
affect chemistry and development are still lacking. We 
briefl y discuss aspects of emerging scientifi c understanding 
that may lead to breakthroughs in the computational model-
ing of these properties.  
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   INTRODUCTION 
 The biopharmaceutical classifi cation system (BCS) presents 
a basis for categorizing a drug based on its aqueous solubility 
and permeability with an eye toward drug absorption. 1  The 
BCS has had great impact in early development of potential 
therapeutics by providing signifi cant insight into the formula-
tion of new drugs, in addition to its primary role in the waiver 
of in vivo bioequivalence studies for BCS class I drugs. More 
recently, there has been signifi cant interest in considering the 
BCS properties in the discovery stages of research. 
 The BCS guidance considers 2 primary facets of a drug ’ s 
properties. The solubility designation is based upon the 
lowest solubility determined for a compound in the pH 
range of 1.0 to 7.5. A compound is considered highly solu-
ble if the highest immediate-release dose is soluble in 250 
mL of aqueous media in this entire pH range. Otherwise, the 
compound falls into the poor solubility category. It is worth 
noting that, while the U.S. Food and Drug Administration ’ s 

guidance 2  is clear, there is considerable debate in the litera-
ture on whether this defi nition of high and low solubility is 
too conservative. 3  The alternate volume of 500 mL has been 
proposed as a better choice because it refl ects the average 
volume of the small intestines in the fasted state. There is 
also debate about the pH range of interest, with the range of 
1.0 to 6.8 being suggested, given that a compound should be 
fully dissolved prior to reaching the ileum, assuming rapid 
dissolution. The high permeability criterion is defi ned as 
90% or higher intestinal absorption. Below 90% absorption, 
the compound is considered to have low permeability. In 
practice, this is somewhat diffi cult to determine in discov-
ery, as human data are only sparingly determined. 
 This report reviews the current status of computational tools 
in predicting the base properties of the BCS. Although we 
have not been truly comprehensive, we have sought to  provide 
as complete an understanding of the status of the fi eld as pos-
sible. In addition, we provide our perspective on the progress 
of research into an in silico equivalent to the BCS.  

  SOLUBILITY PREDICTION 
 As solubility prediction has been the focus of several 
reviews over recent years, 4-11  we will focus on work from 
only the last few years, with a particular focus on related 
methodologies that may positively affect solubility predic-
tion in the future. We turn the reader ’ s attention to an excel-
lent review of solubility prediction by Delaney, 7  who 
discusses some of the major obstacles faced in empirical 
solubility modeling. 12  Most of the previous reviews point 
out that solubility modeling efforts have suffered from some 
basic concerns, such as training sets that are not druglike, 
unknown or high experimental error, lack of structural 
diversity, incorrect tautomers or structures, neglect of ion-
ization, no consideration of salt and/or common ion issues, 
avoidance of crystal packing effects, and range in solubility 
data that is not pharmaceutically relevant. A small number 
of publications are starting to address many of these issues, 
especially the issues relating to data quality and scope, 
though no publication has tried to address all of them. Prac-
tically speaking, a model that addressed all of these issues 
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might be so complicated as to be of limited value to most 
discovery organizations. 
 Delaney 7  mentions the need for a  “ fi t-for-purpose ”  (FFP) 
metric to compensate for the broad range of solubilities over 
which most reports model performance. By presenting sta-
tistics over ranges of up to 13 orders of magnitude, the sta-
tistics often portray a rosier picture of the model’s utility 
than is often experienced in a pharmaceutical discovery 
project. We are most interested in the performance of mod-
els in the key 0.1  � g/mL to 250  � g/mL range for discovery, 
which corresponds to roughly  – 7 to  – 3.5 logS in molarity 
for a compound with a molecular weight (MW) of ~500. 
When higher than this range, solubility is rarely at the fore-
front of issues in a discovery project. Solubility measure-
ments below 0.1  � g/mL are very diffi cult analytically, 
making it practically impossible to verify such predictions. 
In this review, we will report statistics for solubility models 
for compounds in this range, when possible, referring to it 
as the  “ FFP range. ”  When only a qualitative statement can 
be made based on a fi gure from the original paper, we will 
identify it as such. 
 Several manuscripts have appeared with models of varying 
complexity for the prediction of solubility. 4  ,  8-10  ,  13-36  We will 
discuss only a few in depth; several others are listed in  Table 1 .  

  Bergstrom et al used carefully measured solubility data for 
druglike compounds to develop a series of predictive mod-
els. 28  Both general models and a series of more localized 
models were generated and compared. The consensus model 
used a combination of topological, physicochemical, and 
surface area descriptors and had an  R  2  = 0.80. In the FFP 
range, the consensus was  R  2  = 0.62, which is encouraging. 
The authors also reported predictions for the oft-used data 
from Huuskonen et al 38  and Jorgensen and Duffy, 39  provid-
ing a nice example of a common phenomenon in absorp-
tion, distribution, metabolism, and excretion (ADME) 
modeling: the lack of transferability of empirically parame-
terized models. The correlation for compounds in this exter-
nal test set in the FFP range was a very disappointing  R  2  = 
0.22. To the authors ’  credit, the paper contains a signifi cant 
discussion of the suitability of this external set compared 
with the training data. Much of this discussion echoes con-
cerns raised previously. 12  ,  22  

 Yan and Gasteiger have published several recent reports of 
solubility models. 22  ,  25  ,  29  In their initial reports, 22  ,  25  the 
authors used the Huuskonen et al 38  data set for training but 
found that it was of limited applicability when the resulting 
models were tested by a large data set provided by Merck 
KGaA. In their most recent report, 29  the authors used the 

  Table 1.    Summary of Recent Aqueous Solubility Models*

Authors N Modeling Methods Some Relevant Statistics Descriptors

Engkvist and Wrede 35 3042 CNN Train  R  2  = 0.91
  Valid  R  2  = 0.86

Topological and 
 constitutional 

Cheng and Merz 14 809 GA/MLR Train  R  2  = 0.84 Topological
Wegner and Zell 34 1016 CNN Train  R  2  = 0.94

  Valid  R  2  = 0.82
Topological, electronic

Manallack et al 30 788 CNN 87.18% correct BCUT
Schaper et al 37 787 MLR Train  R  2  = 0.94

  Valid  R  2  = 0.92
HYBOT

Yan and Gasteiger 22 793 CNN Train  R  2  = 0.92
  Valid  R  2  = 0.94

Topological

Yan and Gasteiger 25 797 CNN Train  R  2  = 0.93
  Valid  R  2  = 0.92

3D

Yan et al 29 1217 CNN Train  R  2  = 0.86
  Valid  R  2  = 0.81

3D

Hou et al 23 1290 MLR Train  R  2  = 0.92
  Valid  R  2  = 0.88

Atom types

Votano et al 19 3343 CNN Train  R  2  = 0.88
  Valid  R  2  = 0.77

Topological, constitutional

Bergstrom et al 28 85 PLS Train  R  2  = 0.80
  Valid  R  2  = 0.59

2D and 3D

Raevsky et al 36 1063 MLR Train  R  2  = 0.90 HYBOT, nearest 
 neighbor similarity

*CNN indicates computational neural network; Train, training set statistics; Valid, external validation set statistics; GA/MLR, genetic algorithm/
multiple linear regression; BCUT, Pearlman ’ s BCUT descriptors; HYBOT, hydrogen bond thermodynamics descriptors; PLS, partial least squares.    
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Merck data set for training and the Huuskonen data for pre-
diction. The outcome was quite reasonable for the Huuskonen 
test data, although both the correlation coeffi cient ( R  2  = 0.83 
compared with  R  2  = 0.92 previously, 3D neural network 
models) and the mean absolute error (0.66, compared with 
0.49 in the earlier work) degraded substantially compared 
with those of the earlier report. The authors note that the 
Merck data set contains a more diverse collection of com-
pounds than the Huuskonen data, which may partially 
explain why the model trained on the Merck data performed 
somewhat better in predicting the Huuskonen data than vice 
versa. Not enough data were given to determine the results 
in the FFP range, although based on the fi gures in the earlier 
papers, 22  ,  25  the statistics for the test data in the FFP range 
were not as good as for the entire data set. 

 Two very interesting recent papers applied the HYBOT 
descriptors to solubility prediction of liquids 37  and solids. 36  
They are both discussed in greater detail below, in the sec-
tion about crystal effects on solubility prediction. 

 A few reports of models for the prediction of aqueous 
solubility of pharmaceutical salts have emerged in recent 
years. 40-43  Parshad et al developed a model for the solubility 
of benzylamine salts with a combination of experimental 
and theoretical descriptors. 42  The best purely computational 
model employed the Charton steric parameter, Hansch 
parameters, and the MW of the salt, resulting in  R  2  = 0.73 for 
the training data and  R  2  = 0.70 for the validation data. 
Tantishaiyakul 41  reused the benzylamine data set to develop 
a computational neural network model using only calculated 
descriptors. The model used the number of H-bond acceptor 
oxygens, the total H-bond number, the clogP, the surface 
area, MW, and the calculated binding energy between the 
salt and benzylamine. The 6-2-1 network had an overall  R  2  = 
0.87 and a root-mean-square error (RMSe) = 0.17. An earlier 
report by Tantishaiyakul 40  reported a simple partial least-
square (PLS) model for the solubility prediction for a series 
of diclofenac salts. Though limited in scope, these reports 
represent an interesting application of modeling. 

 To forecast the exposure of a potential drug, the entire pH 
range of the gastrointestinal tract must be accounted for in 
the prediction of aqueous solubility. 44-46  Indeed, fundamen-
tal to the BCS is the dose number, or the ratio of the dose to 
the amount of compound that will dissolve in 250 mL at the 
minimum solubility in a pH range of 1 to 8. 47  Several mod-
els have appeared that account for ionization, typically 
through the use of the Henderson-Hasselbach (HH) equa-
tion with predicted pK a  values. Bergstrom et al 48  performed 
an elegant study of the appropriateness of the HH equation 
to 25 druglike monoprotolytic cationic compounds in diva-
lent buffer systems. They show a range of slopes from 0.5 to 
8.6 for the linear portion of the experimental pH-solubility 
curve, compared with the assumed value of 1 used in the 

HH equation. They conclude that this variability in slopes is 
due to a combination of low-MW aggregation and salting 
out effects of the phosphate counter-ion. Furthermore, they 
show that the range of solubility over the pH-solubility 
curve varies from 1.1 log units to 6.3 log units, most likely 
as a result of the common ion effect. In total, the HH esti-
mated solubility at pH 6.5 deviated from the measured solu-
bility by 10-fold on average, and up to 776-fold in the 
extreme. 
 Interestingly, Schaper et al attempted to correct their train-
ing data for the effect of ionization. 37  A relatively small por-
tion of their training data were ionizable compounds with 
no reported pH information. Their assumption was that the 
solubility measurements were done in unbuffered solution. 
To determine the pH of the solution (and, therefore, the 
fraction of compound un-ionized at that pH), they numeri-
cally solved a third- or fourth-order equation using an 
observed solubility measurement and known pK a . They 
then used the resulting fraction un-ionized term as a feature 
in their model. 
 The aqueous solubility of potential drugs is typically mea-
sured in a buffered salt solution, which further complicates 
solubility prediction. The Setschenow equation 49  describes 
the ratio of the solubilities of an organic solute in an aque-
ous salt solution versus pure water:

  (1) 

 where S is the solubility of the solute in the aqueous salt 
solution, S o  is the solubility in water, C salt  is the molar con-
centration of the electrolyte, and K salt  is the solute-specifi c 
Setschenow constant. There have been 2 recent examples of 
models reported to predict Setschenow constants. 50  ,  51  Ni 
and Yalkowsky 50  demonstrate a fairly simple relationship 
between clogP and the Setschenow constant (K salt  = 0.040 
clogP + 0.114,  r  2  = 0.60, n = 101, SE = 0.041). They also 
show that this relationship is superior to previously hypoth-
esized links between K salt  and aqueous solubility 52  or the 
molar volume calculated by the Le Bas method. 53  Li et al 51  
generate results of similar quality using topological connec-
tivity indices. A simplifi ed mechanistic look at Setschenow 
constants was among the properties investigated by the 
 “ Mercedes Benz ”  model of water. 54  The direct application 
of any of these approaches in the in silico prediction of 
aqueous solubility is still lacking. 
 Yet another factor in solubility prediction that is often 
ignored is the role of the crystal form of a druglike solute 
(an early notable exception is that of Abraham and Le 55 ). An 
excellent recent review discusses the importance of solid-
state properties on a range of developability considerations 
in drug discovery and development. 56  Most interesting out 
of this review, with respect to solubility, is the relative rarity 
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of large solubility differences among polymorphs. Indeed, 
the authors state that the  “ solubility difference between dif-
ferent polymorphs is typically less than 10 times ”  (p.323). 
Pudipeddi and Serajuddin 57  go further, providing data 
showing that the ratio is typically less than 2. Contrasting 
this, however, is the extreme difference in solubility often 
observed between amorphous material and crystalline 
material. 56  In aggregate, these data could lead to the alluring 
possibility that, while the ability to identify the most stable 
crystal lattice may not be necessary, the incorporation 
of some realistic measure of crystal packing is crucial to 
practical solubility prediction. 

 Conversely, Nielsen et al 58  attempted to quantitatively link 
aspects of crystal packing to solubility for a series of N-alkyl 
bupivacaine salts. They did see a trend of decreasing solu-
bility with increasing crystal lattice density. However, their 
analysis was frustrated by unpredictable changes in packing 
modes due to anionic counter-ions and the alkyl substituent. 
They conclude that reliable lattice energy calculations are 
required for deriving relationships between solubility and 
solid-state characteristics, even for a series of closely related 
analogs. This opinion is supported by Romero and Rhodes, 
who fi nd that even quantifying the impact of crystals of 
different enantiomers on solubility is nontrivial. 59  

 Probably the best-known solubility model that includes 
crystal forces is the general solubility equation (GSE) popu-
larized by Yalkowsky 60 :

        L  o  g   (    S  o    )    =   −  0.01   (   M  P   −   25 ° C   )    −   log   P   +   0.50       (2)

 where S o  is the intrinsic aqueous solubility in the units of 
moles/L, logP is the octanol-water partition coeffi cient, and 
MP is the melting point in °C. Derived from a theoretical 
basis with no fi t parameters, the GSE is based on a few sim-
ple assumptions, including the applicability of Walden’s 
rule (entropy of melting) and the fact that organic neutral 
liquids are completely miscible with octanol. Still, the GSE 
performs admirably in prediction for simple organics. The 
requirement of a measured melting point has greatly limited 
the use of the GSE within the pharmaceutical industry, as 
melting point measurements are no longer routine in mod-
ern medicinal chemistry. Not surprisingly, several reports 
relating to the prediction of melting point from structure 
have emerged in recent years. 10  ,  61-65  We will not review 
melting point prediction in depth here; instead, we refer the 
reader to the fairly recent perspective by Katritzky et al. 66  
More recently, Yalkowsky has derived new parameters for 
predicting the entropy of melting, which presumably could 
be used in the GSE to remove the assumption of the appli-
cability of Walden’s rule. 63  Bergstrom and coworkers 61  gen-
erated a consensus model using 277 diverse drugs for 
melting point prediction that focuses on descriptors of polar-
ity and molecular fl exibility. The RMSe of the validation 
data was 44.6°C. Karthikeyan et al used 4173 compounds to 

develop a computational neural network model of melting 
point. 64  The best resulting model employed 26 2-dimen-
sional descriptors in a 26-12-1 neural network, resulting in 
 R  2  = 0.66, with RMSe ranging from 41.4 to 49.3°C depend-
ing on which external validation set was used. 

 In 2 papers Raevsky and colleagues build on the GSE by 
deconvoluting the logP component into separate descrip-
tors. 36  ,  37  Using a collection of liquid chemicals and drugs, 37  
they demonstrate that descriptors previously identifi ed 67-70  
as being relevant for logP prediction perform admirably in 
the GSE in place of the logP term. This is an interesting 
result, as hydrogen bond donor strength was not an important 
descriptor for logP prediction but appears critical for model-
ing solubility. By adding H-bond donor strength to their 
model, they improve the solubility prediction signifi cantly. 

 In the follow-up paper that considers solid chemicals and 
drugs, 36  the authors apply the GSE to 1063 neutral solid-
state compounds with known melting point. The statistical 
performance ( R  2  = 0.85, RMSe = 0.81) was substantially 
less impressive than for previous data sets that included a 
large number of liquid-state compounds. 71  Predictions were 
more than a log unit off the observed values for ~19% of the 
compounds. Nonetheless, in our opinion this result (based 
on experimentally determined melting point and logP) is 
more than competitive with most external tests of purely in 
silico models reported in the literature. Based on a qualita-
tive view of the fi gure, the predictions in the FFP range were 
worse than those for the data set as a whole. Of the 26 outli-
ers noted for the entire 13 orders of magnitude, 12 fell in the 
3.5 log units designated here as the FFP range. 

 The authors then take a novel approach to a computational 
model of the solubility of solids. They implicitly capture the 
crystal lattice energy using the observed solubility of sev-
eral highly similar compounds with an adjustment based on 
the differences in the physicochemical descriptors identi-
fi ed as important for predicting the solubility of liquids. 36  
The resulting model performance is very competitive with 
those obtained for the GSE, but without the requirement for 
a measured melting point. Roughly 7 of the 14 outliers in 
this model fall in the FFP range, based on a plot in the paper. 
Based on the fi gures in the paper, the fi t seems better in this 
range for the computational model than for the experimen-
tally based GSE. 

 Several methods 72-80  for predicting crystal lattices or quan-
tifying lattice energy, with possible use in solubility predic-
tion, are on the horizon. We particularly highlight the 
excellent recent review by Datta and Grant, 77  who discuss 
in comfortable detail recent efforts to predict crystal struc-
tures of druglike compounds. The molecular dynamics 
method proposed by Gavezzotti 78  to assess the relative sta-
bility of crystal lattices is particularly appealing, although 
diffi cult to implement as a fully computational method in 
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practice. In general, these approaches hold great promise 
but, due to their complexity and predictive limitations, are 
not yet practical solutions for a general treatment of crystal 
packing limited solubility prediction. 
 In summary, substantial research has been underway in pre-
dicting the aqueous solubility of druglike compounds. Of 
particular note is the increased awareness of the many con-
founding aspects of solubility that must be considered for a 
model to yield highly accurate predictions. We expect that 
in the coming years more sophisticated models will emerge 
that begin to more tightly integrate measures of crystal 
packing, salt effects, and ionization alongside solvation 
considerations.  

  ABSORPTION MODELING 
  Modeling of P-Glycoprotein Substrates and Inhibitors 
 P-glycoprotein (Pgp), which belongs to the adenosine tri-
phosphate binding cassette transporter family, is found in all 
cells in every species. The effect of Pgp-mediated drug 
effl ux limits intestinal absorption and oral bioavailability of 
drugs. Because of this critical role in oral absorption and 
bioavailability, extensive research has been conducted to 
uncover the molecular features required for the substrates 
and/or inhibitors of Pgp transporter. Such models are 
expected to play an important role in early drug discovery 
and help reduce the attrition rate in later-stage drug 
development. 
 In recent years there have been many research articles that 
examined the molecular determinants of Pgp substrates and/
or inhibitors. Both qualitative and quantitative molecular 
models have been developed to offer insights into the 
molecular mechanisms as well as to provide predictive 
tools. Some selected modeling work is listed in  Table 2 .  
  In 1998 Pajeva and Wiese 81  published their work on 
 comparative molecular fi eld analysis (CoMFA) studies of 
phenothiazines. Later, they conducted pharmacophore mod-
eling research of drugs involved in Pgp multidrug resistance 
using the genetic algorithm similarity program (GASP) 
pharmacophore modeling tool. 82  In a widely cited study, 
Seelig identifi ed 2 recognition elements for Pgp that were 
composed of hydrogen bond acceptors with distinct spatial 
arrangements. 90  Seelig referred to 2 hydrogen bond accep-
tors separated by ~2.5 Å as a Type I pattern; Type II patterns 
are formed by 2 hydrogen bond acceptors separated by 
~4.6 Å, or 3 hydrogen bond acceptors separated by ~2.5 Å 
with a 4.6 Å separation of the outer 2 acceptor groups. 
 In 2002, Ekins et al reported their studies on both Pgp sub-
strates and inhibitors using the catalyst pharmacophore 
modeling method. 83  ,  91  Although their work has not provided 
detailed predictive models tested by extensive external 
compounds, they seem to have provided some molecular 

insights consistent with experimental observations. Penzotti 
et al described their work on classifi cation models using a 
special pharmacophore ensemble approach to classify Pgp 
substrates with an overall accuracy of 63%. 84  In addition to 
classifi cation models, this method revealed the molecular 
pharmacophores that underlie the interaction between Pgp 
substrates and the protein. 
 In the past 2 to 3 years, more work has been published 
concentrating on applying machine learning methods and 
descriptor-based quantitative structure-property relation-
ship (QSPR) methods. Xue et al used support vector 
machine (SVM) to study 201 compounds, including 116 
Pgp substrates and 85 nonsubstrates. 85  This method gave a 
prediction accuracy of at least 81.2% for Pgp substrates. 
The prediction accuracy for nonsubstrates was 79.2% 
using a cross-validation. A data set of 57  fl avonoid Pgp 
inhibitors was studied using a Bayesian-regularized neural 
network in which Molconn-Z and clogP descriptors were 
used. 86  Wang et al also used Kohonen self-organizing maps 
to develop a classifi cation model to discriminate substrates 
and inhibitors with an average accuracy of 82.3%. 87  The 
data set has 206 chemicals: 96 substrates, 78 inhibitors, 
and 32 overlapping compounds. Although these models 
may not have practical utility because of the nature of 
the data set collected from the literature, they do repre-
sent some new development in applying machine learn-
ing methods to the study of Pgp substrates/inhibitors 
classifi cation. 
 Two recent publications are especially interesting from a 
practical standpoint. Gombar et al published their work 
using what they called  “ information-rich descriptors ”  and 
linear discriminate analysis. 88  They analyzed a set of 95 
compounds, including GlaxoSmithKline proprietary and 
known drug molecules. They paid special attention to the 
data consistency with unifi ed experimental protocol. In 
addition to a regular QSPR classifi cation model, they 
proposed a simple rule for Pgp substrates. Another recent 
work described a novel approach to performing alignment-
independent 3D quantitative structure-activity relationship 
(QSAR). 89  This method not only afforded statistically tested 
predictive models but also revealed potential pharmaco-
phore requirements. In the following text, we provide some 
more detailed discussion of these 2 publications as well as 
that published by Penzotti et al. 84  
 One of the early efforts in gathering and modeling a large 
set of diverse Pgp compounds was published by Penzotti 
et al. 84  They assembled a data set of 195 compounds from 
the literature. In the study, they used a holdout set of ~25% 
of the compounds selected randomly from the 195 com-
pounds. The test set contained 32 Pgp substrates and 19 
nonsubstrates. The remaining 144 compounds, including 76 
substrates and 68 nonsubstrates, were used as the training 
data set to derive the computational model. 
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 One interesting fact about their method is that they charac-
terized the chemical similarity using the Daylight Tanimoto 
similarity measure. The average pairwise Daylight  Tanimoto 
similarity of all 195 compounds is 0.18. The training set and 
the test set compounds also have comparable pairwise simi-
larities. This is an important metric because it indicates that 
their method may be used to predict compounds from dif-
ferent chemical classes. The classifi cation rates of the fi nal 
pharmacophore ensemble model are 80% and 63% for the 
training and test sets, respectively. 

 In addition to the classifi cation model, which can be used 
as a virtual library fi lter, the authors derived molecular phar-
macophores. Contained in the signifi cant pharmacophores 
are examples of the Type I and Type II patterns composed of 
hydrogen bond acceptors described by Seelig. 90  This indi-
cates that their method can successfully provide molecular 
models in addition to classifi cation models. 

 Gombar et al obtained one of the most remarkable results 
on the modeling of Pgp substrates. 88  They used a training 
set of 95 compounds (63 substrates and 32 nonsubstrates) 
based on the results from in vitro monolayer effl ux assays. 
(All 95 compounds were uniformly assayed for their Pgp 
activity.) The use of uniform assay conditions is an impor-
tant requirement for reliable model development. They 
derived a 2-group linear discriminant analysis (LDA) 
model. Remarkably, the model computed the probability 
that a structure is a Pgp substrate with a sensitivity of 100% 
(ability to correctly identify substrates) and a specifi city of 
90.6% (ability to correctly identify nonsubstrates) in the 

cross-validation test. A prediction accuracy of 86.2% was 
obtained on an additional test set of 58 compounds (35 sub-
strates + 23 nonsubstrates) with sensitivity 94.3% and 
specifi city 78.3%. 
 Another interesting aspect of this work is that they derived 
a simple rule: those molecules with MolES > 110 were pre-
dominantly Pgp substrates (18/19: 95%), and those with 
MolES < 49 (11/13: 84.6%) were predominantly nonsub-
strates. Here, MolES is the molecular bulk calculated as the 
sum of atomic electrotopological states (ES) values. 
 In 2005 Cianchetta et al described another exciting effort. 89  
They derived a pharmacophore hypothesis based on a set of 
129 compounds (100 Sanofi -Aventis compounds and 29 pub-
licly available compounds). The data set was divided into 4 
classes based on compound activity values. They proposed a 
novel set of descriptors based on GRID calculated interaction 
fi elds followed by modifi ed autocorrelation calculation. This 
generated 940 descriptors similar to pharmacophore keys. 
The results included both predictive models and pharmaco-
phore descriptions. The models using VolSurf descriptors 
achieved training set  R  2  = 0.72 and  Q  2  = 0.52; for combined 
pharmacophore descriptors and 94 VolSurf descriptors, the 
training  R  2  = 0.80 and  Q  2  = 0.72. The models derived using 
only pharmacophore descriptors after some preselection gave 
a training  R  2  = 0.82 and  Q  2  > 0.72. The pharmacophore 
hypothesis includes 2 hydrophobic groups 16.5 Å apart and 
2 hydrogen bond acceptor groups 11.5 Å apart. 
 To develop reliable models for Pgp substrates/inhibitors 
identifi cation, future work should attend more to data 

  Table 2.    Summary of Selected Computational Modeling Work on P-Glycoprotein Substrates/Inhibitors*   

Authors Data Set Size Modeling Methods Some Relevant Statistics Descriptors

Pajeva and Wiese 81 40 CoMFA  R  2  = 0.79;  Q  2  = 0.35
   R  2  = 0.90;  Q  2  = 0.84

CoMFA

Pajeva and Wiese 82 25 Pharmacophore
  GASP

GASP scoring

Ekins et al 83 <20 Catalyst Pharmacophore Catalyst
Penzotti et al 84 195 Pharmacophore ensemble CR: 63% Pharmacophore 

 descriptors
Xue et al 85 201 Classifi cation CR: 79%-81% Properties, Molconn-Z, 

 quantum, ES, and 
 geometric

Wang et al 86 57 QSAR  R  2  = 0.73 – 0.75 ClogP, Molconn-Z
Wang et al 87 206 Kohonen SOM classifi cation CR: 82.3%
Gombar et al 88 95 LDA classifi cation Training CR: 100%; 90%

  Test CR: 94%; 78%
Estate; topological etc

Cianchetta et al 89 129 PLS  R  2  = ~0.7 – 0.8
   Q  2  = ~0.5 – 0.7

VolSurf; GRIND

    *CoMFA indicates comparative molecular fi eld analysis; GASP, genetic algorithm similarity program; CR, classifi cation rate; ES, electrotopological 
state; QSAR, quantitative structure-activity relationship; SOM, self-organizing map; LDA, linear discriminant analysis; PLS, partial least-square; 
GRIND, grid independent descriptors.    
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consistency. Model validation using a true holdout set 
should always be attempted. In addition to traditional QSPR 
models, which can be useful in virtual screening and data-
base search exercises, more interpretable models or rules 
can be very useful for medicinal chemists to consider in the 
lead optimization work. These are represented by Gombar ’ s 
work and Cianchetta ’ s work, reviewed above. Only when 
we achieve this can such tools have a broad impact on lead 
optimization projects in assisting chemists in morphing the 
chemical series at hand to increase potency and decrease 
Pgp liability.  

  Modeling of Intestinal Permeability 
 Intestinal drug permeability, together with aqueous solubil-
ity, is one of the most important factors infl uencing drug 
absorption. In recent years, various in vitro permeability 
models have been developed to help predict oral drug 
absorption and bioavailability. These include Caco-2, 
Madin-Darby canine kidney (MDCK), and 2/4/A1 cell cul-
ture models, as well as the parallel artifi cial membrane per-
meability assay (PAMPA) and immobilized artifi cial 
membrane (IAM) and physicochemical models. While the 
former can refl ect both transcellular and paracellular routes 
of permeability, as well as active transport to some degree, 
the latter models mostly mimic the transcellular route of 
drug permeability. 92  
 As the in vitro models continue to develop and mature in 
terms of their throughput and quality, computational meth-
ods that can correlate chemical structures and their experi-
ment permeability measurements are highly desirable. 
These in silico models, when carefully developed and rigor-
ously validated, have the potential to be used in early screen-
ing set or library design. They can also play a role in lead 
optimization and preclinical candidate selection. Several com  -
putational models for permeability are shown in  Table 3 . 
Recently, Bergstrom reviewed the application of polar sur-
face area (PSA) as a descriptor to model permeability and 
solubility data. 93  Malkia et al looked at various physico-
chemical factors underlying the permeation process, in vitro 
experiment models as well as in silico modeling of permea-
bility. 94  These reviews covered mostly articles published 
prior to 2002. We will look at some more recent work on 
this topic.   
 Kulkarni et al analyzed 38 compounds and tested the model 
using 8 additional compounds. 95  They created a model 
monolayer to represent the membrane structure. They cal-
culated both intramolecular properties and intermolecular 
properties, which characterized the interaction with the 
membrane as well as solute dissolution and solvation. A 
series of models were developed using 1 to 6 terms using 
multiple linear regression (MLR). Most models gave  R  2  > 
0.8 and  Q  2  > 0.70. This method also provided some mecha-

nistic interpretation of the model. That is, the Caco-2 
permeability depended on several factors: solubility, drug-
membrane binding, and conformational fl exibility. 

 Yamashita et al developed a model of Caco-2 permeability 
using genetic algorithm with partial least squares (GA-
PLS). 96  Data for 73 compounds were collected from the lit-
erature. Molconn-Z descriptors were employed. The model 
achieved  R  2  = 0.886 for the entire data set and a predictive 
 R  2  = 0.825. In a related work, they also developed a new 
concept — the latent membrane permeability concept — 
to model permeability data from different sources. 97  Eighty-
one compounds were analyzed based on this concept using 
an iterative calculation method. It analyzed the Caco-2 per-
meability from different sources simultaneously, assuming 
that all the data sets share a hidden, common relationship 
between their permeability and their physicochemical prop-
erties. The model achieved  R  2  ranging from 0.75 to 0.88. 

 Using a combination of molecular orbital (MO)-calculation 
and neural network analysis, Fujiwara et al developed a 
model of Caco-2 permeability. 98  The data set had 87 com-
pounds. They used dipole moment, polarizability, sum of 
charges on nitrogen and oxygen atoms, and so on. A feed-
forward back-propagation neural network with a confi gura-
tion of 5-4-1 was developed. The predictive root mean 
square error was 0.507 in cross-validation. 

 Marrero et al developed a new set of topological descriptors 
called quadratic indices. 99  They applied these descriptors to 
analyze Caco-2 permeability data for 33 compounds. The 
model could distinguish the high-absorption compounds 
from those with moderate-to-poor absorption. A global clas-
sifi cation rate was 87.87% using LDA. In a test experiment, 
they used the model to assess 18 compounds; the classifi ca-
tion rates were 80.00% and 94.44% for the moderate-
to-poor and high-absorption groups, respectively. 

 Hou et al 100  analyzed a data set of 77 compounds with Caco-
2 permeability data collected from literature sources. The 
descriptors included logD at pH = 7.4, highly charged PSA 
(HCPSA), and radius of gyration (rgyr), representing the 
shape and volume of the compounds. They found that logD 
had the largest impact on diffusion through Caco-2. The 
comparison among HCPSA, PSA, and topological PSA 
(TPSA) demonstrates the importance of the highly charged 
atoms to the interactions between Caco-2 cells and drugs. 
The results also indicate that lipophilicity, H-bonding, bulk 
properties, and molecular fl exibility can improve the corre-
lation. The model statistics are n = 77,  R  2  = 0.82, and  Q  2  = 
0.79. The authors also validated the model using an external 
set of 23 compounds and achieved similar predictions. 
 Fujikawa et al developed QSPR models for data based on 
PAMPA assay. 101  Descriptors included logP, |pK a  - pH| and 
the surface areas occupied by the hydrogen-bond acceptor 
(SAHA) and donor atoms (SAHB). The data set had 35 
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compounds. The authors used the PLS correlation method. 
The model yielded  R  2  = 0.84 and  Q  2  = 0.79. In another data 
set that had 57 compounds, the authors obtained a model 
with  R  2  = 0.78 and  Q  2  = 0.74. They also demonstrated that 
PAMPA and Caco-2 data were well correlated for this data 
set (n = 27;  R  2  = 0.81;  Q  2  = 0.78). Based on these results, 
they suggested a procedure by which one could in theory 
predict the oral absorption of compounds. 
 In a recent publication, Refsgaard et al developed in silico 
models of membrane permeability based on the largest self-
consistent data set published so far. 102  They analyzed 712 
compounds (380 nonpermeable, 332 permeable) to develop 
a 2-class classifi cation model. The permeability data were 
binned into 2 classes based on apparent permeability: those 
below 4 × 10  − 6  cm/s were classifi ed as low permeability, 
and those with 4 × 10  − 6  cm/s or higher were classifi ed as 
high permeability. Nine molecular descriptors were calcu-
lated for each compound. A 5-descriptor Near Neighbor 
model (number of fl exible bonds, number of hydrogen bond 
acceptors and donors, and molecular surface area and PSA) 
was built. The model was tested using an external set of 112 
compounds. The misclassifi cation rate was 15%, and no 
compounds were falsely predicted in the nonpermeable 
class. 
 Most of the published work is based on small sets of perme-
ability data (<100 compounds) that are collected from liter-
ature sources. Since the validity of any model depends on 
the data set used, a large and self-consistent data set is 
required for the development of global models with general 
applicability. It is highly desirable to develop the models 
using data generated from the same lab using the same pro-

tocols. For example, Artursson et al compared 4 calibration 
curves relating the fraction absorbed in human and Caco-2 
permeability. They demonstrated that the curves were 
shifted relative to one another by ~0.25 to 1.75 log permea-
bility units. 103  Local models may solve this problem by 
building compound class-specifi c models using, again, self-
consistent data. It is exciting to see such work as Refsgaard 
et al ’ s publication, 102  which was based on a large set of >700 
compounds with data from the same laboratory. 
 Model validation is another critically important step in 
building robust QSPR models. Ideally, one should report 
results based on the training set, the cross-validation set, 
and an external data set to increase the users ’  confi dence 
level. Consistent reporting of model statistics is highly 
desirable so that readers can objectively evaluate the model 
quality and applicability in a real-life drug discovery set-
ting. For example, for quantitative QSPR models, one may 
want to report the (training set)  R  2 , leave-one-out (leave-
some-out)  R  2  or  Q  2 , external holdout  R  2 , and RMSe between 
the experimental values and the predicted values. For 
classifi cation models, a  “ confusion matrix ”  may need to be 
published in addition to an overall classifi cation rate, which 
may be biased by extreme values. The confusion matrix 
also provides information on false-positive and false-
negative in addition to correct classifi cations. 
 We hope that more permeability modeling work will be 
based on larger self-consistent data sets and will adopt rig-
orous validation procedures, as discussed above. Only by 
doing so can we move the fi eld forward from the proof-of-
concept stage to having real-life impact in drug discovery 
setting.  

  Table 3.    Selected Work on Computational Modeling of Permeability*  

Authors
Size of Data 

Sets Methodology Descriptors Statistics

Refsgaard et al 102 712 Near neighbor method ClogP, rotbond, HBD/HBA, PSA, MW, etc CR: 85%
Fujikawa et al 101 35 PLS |pK a -pH|, logP, SAHA, SAHB, PSA Model 1:  R  2  = 0.84;  Q  2  = 0.79

  Model 2:   
R  2  = 0.78;  Q  2  = 0.74

Hou et al 100 77 MLR LogD, HCPSA, rgyr, MW, vol, etc  R  2  = 0.82;  Q  2  = 0.79
Marrero et al 99 33 LDA Quadratic indices Training CR: 87.87%

  Test CR: 80% and 94.44%
Fujiwara et al 98 87 CNN Dipole, polarizability, charges on N, O, etc RMSe:

  0.507
Yamashita et al 96 73 GA-PLS Molconn-Z  R  2  = 0.89;  Q  2  = 0.83
Yamashita et al 97 81 MLR and latent 

 permeability concept
Dipole, polarizability, charges on N, O  R  2  = 0.75-0.88

Kulkarni et al 95 38 MLR Membrane interaction descriptors  R  2  > 0.8;  Q  2  > 0.70
   *HBD/HBA indicates number of hydrogen bond donors and acceptors; PSA, polar surface area; MW, molecular weight; CR, classifi cation rate; PLS, 
partial least-square; SAHA, surface area of hydrogen bond acceptors; SAHB, surface area of hydrogen bond donors; MLR, multiple linear regression; 
HCPSA, highly charged polar surface area; LDA, linear discriminant analysis; CNN, computational neural network; RMSe, root-mean-square error; 
GA-PLS, genetic algorithm – partial least squares.    
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  Modeling of Bioavailability and Fraction Dose Absorbed 
 Bioavailability is used to describe the fraction of an admin-
istered drug that reaches the systemic circulation and its site 
of action. Oral bioavailability is the result of a complex 
series of events: chemical and enzymatic stability, solubility 
and dissolution, and intestinal permeability. Because of 
incomplete absorption and fi rst pass metabolism and other 
stability factors, bioavailability is usually <100%. To lower 
the attrition rate of drug development, we need to develop 
robust and accurate in silico models that can predict and 
prioritize compounds before they are synthesized or moved 
forward to preclinical and clinical development. 
 There are several approaches to the development of compu-
tational models for bioavailability and fraction dose 
absorbed. Rules derived from statistical analysis of known 
oral drugs have been popularized by Lipinski et al ’ s seminal 
work. 104  More predictive mechanistic models are appearing 
in the literature. 105-107  QSPR methods that employ molecu-
lar descriptors and machine learning techniques continue to 
develop. Here we review some of the work in this area, most 
of which was published after 2002.  

  Statistically Derived Rules 
 Since Lipinski et al ’ s infl uential work 104  on the analysis of 
orally active drugs to derive the widely publicized rule (ie, 
the  “ rule of 5 ” ), several groups have studied this issue, try-
ing to uncover other factors that may also be important for 
oral bioavailability. Veber et al described their analysis of 
oral bioavailability data in rats for over 1100 drug candi-
dates. 108  A number of these rules and alerts are shown in 
 Table 4 . They found that reduced molecular fl exibility and 
low PSA (or total hydrogen bond counts) are important pre-
dictors of good oral bioavailability. They suggested that 
compounds that meet only the 2 criteria of (1) 10 or fewer 
rotatable bonds and (2) PSA equal to or less than 140 A 2  (or 
12 or fewer total H-bonds) will have a high probability of 
good oral bioavailability in the rat.   
 Lu et al studied the relationship of rotatable bond count and 
PSA with oral bioavailability in rats and compared their 
results with Veber et al ’ s. 109  They examined 434 Pharmacia 
compounds. Although the general trend of Veber ’ s fi nding 
was still seen, the resulting correlations depended on the 
calculation method and the therapeutic class of the com-
pounds. Thus, Lu et al suggested that any generalization 
must be used with caution. Later, Vieth et al analyzed 1729 
marketed drugs and found that oral drugs tended to be 
lighter and had fewer H-bond donors, acceptors, and rotat-
able bonds than did drugs with other routes of administra-
tion, especially when oral and injectable drugs were 
compared. 110  Again, this observation was in general con-
sistent with Veber et al ’ s fi nding. However, they also cau-

tioned that these were general statistical observations and 
might not be applicable for a particular drug or a class of 
drugs. 
 Recently, Martin developed  “ a bioavailability score ”  (ABS), 
a method to estimate the bioavailability of potential drugs. 111  
This work was based on a diverse set of 553 compounds (99 
different rings and 180 different side chains) with rat bio-
availability data. They further used the ABS to examine the 
human data for 449 compounds. The most interesting dis-
covery was that the rule of 5 could identify poorly bioavail-
able compounds that are neutral and positively charged but 
could not predict anionic compounds. On the other hand, 
the PSA rule worked for anionic compounds, not for neutral 
and cationic ones. When they separated the anionic com-
pounds from the neutral and cationic compounds, a set of 
interesting rules emerged, from which the ABS can be 
estimated. 
 The ABS indicates the probability that a compound will 
have >10% bioavailability in rat or measurable Caco-2 per-
meability. For example, for anions, the ABS is 0.11 if PSA 
>150 Å 2 , the ABS is 0.56 if PSA is  ≥ 75 and  ≤ 150 Å 2 , and 
the ABS is 0.85 if PSA is <75 Å 2 . For cationic and neutral 
compounds, the ABS is 0.55 if it passes the rule of 5 and 
0.17 if it fails the rule of 5.  

  Mechanism-Based Pharmacokinetics Models 
 One advantage of mechanism-based pharmacokinetics (PK) 
models is that they can provide mechanistic details and 
hypotheses that may guide the chemist ’ s work in optimizing 

  Table 4.    Selected Rules or Alerts Derived Statistically for 
Absorption/Bioavailability*  

Authors Rules or Alerts

Palm et al 119 FA > 90% if PSA  ≤  60 Å 2 ; FA < 10% if 
 PSA  ≥  140 Å 2 

Lipinski et al 104 Compounds are more likely to be bioavailable, if
  logP  ≤  5; HBD  ≤  5; HBA  ≤  10; MW  ≤  500

Veber et al 108 Compounds are likely to be bioavailable, if
  (1) rotatable bonds  ≤  10 AND
  (2) PSA  ≤  140 Å 2  or total HB count  ≤  12

Martin 111 Anions
  ABS = 0.11 if PSA >150
  ABS = 0.56 if 75 Å 2   ≤  PSA  ≤  150 Å 2 
  ABS = 0.85 if PSA is < 75 Å 2 
  Cationic and neutral compounds
  ABS = 0.55 if Lipinski ’ s rule passes
  ABS = 0.17 if Lipinski ’ s rule fails

   *FA indicates fraction absorbed; PSA, polar surface area; HBD, number 
of hydrogen bond donors; HBA, number of hydrogen bond acceptors; 
MW, molecular weight; HB, number of hydrogen bond donors and 
acceptors; ABS, a bioavailability score.    



The AAPS Journal 2006; 8 (1) Article 4 (http://www.aapsj.org).

E36

the PK properties of compounds. In the past couple of years, 
a few published articles have indicated the potential predic-
tive power of these models as well. 
 Usansky and Sinko developed an absorption-disposition 
model that predicted bioavailability values (%F) well for 
both highly and poorly absorbed drugs. 106  For 49 of the 51 
compounds in the study, the residuals between predicted 
and experimental %F values ranged from  – 17% to 22%. 
This model offers a quantitative approach for predicting 
human oral absorption from in vitro permeability and per-
haps from computationally predicted permeability as well. 
 Obata et al developed a theoretical passive absorption model 
(TPAM). 107  It used logD at pH 6.0, intrinsic logP, pK a , and 
MW that were calculated from the chemical structures. The 
data set had 258 compounds with observed %F values. Only 
4 coeffi cients in the model needed to be optimized based on 
experimental data. The TPAM predicted the %F values with 
RMSe of 15% to 21% and a correlation coeffi cient of 0.78 
to 0.88. The possibility of overlearning was low, because 
only 4 coeffi cients in the model were optimized by fi tting 
with hundreds of %F values. 
 Willmann et al developed a physiologically based model. 105  
The model can be used to study the dependency of the frac-
tion dose absorbed on the 2 main physicochemical parame-
ters (the intestinal permeability and the solubility) as well as 
physiological parameters such as the gastric emptying time 
and the intestinal transit time. The model parameters were 

optimized using 126 compounds with known %F values. 
The model was used to predict the human %F values with 
permeability-limited absorption; the cross-validation RMSe 
was 7% for passively absorbed compounds. This model 
required experimentally measured permeability data. How-
ever, it is conceivable that well-validated computational 
data may also be applicable.  

  QSPR Approaches to Modeling Bioavailability 
 In the past 3 years, we have seen various efforts to model 
oral bioavailability using the descriptor-based QSPR 
approaches. Both linear and nonlinear learning methods 
have been applied in either quantitative modeling or classi-
fi cation modeling of bioavailability.  Table 5  provides a sum-
mary of recent QSAR models of bioavailability.    
 Liu et al 112  analyzed 169 compounds (113 in training and 56 
in test set) using SVM and the regression method imple-
mented in comprehensive descriptors for structural and sta-
tistical analysis (CODESSA). Both the linear and nonlinear 
models can give satisfactory prediction results. Bai et al 
used classifi cation regression trees to analyze a large set of 
1261 structures and their human oral bioavailability and 
absorption data. 113  They used 899 compounds as the train-
ing set and 362 as the test set. Compounds were divided into 
6 classes. On 2 test sets, their model achieved correct clas-
sifi cation rates ranging from 79% to 86%. 

  Table 5.    Selected QSPR Approaches to Bioavailability Modeling*   

Authors
Size of Data 

Sets Methodology Descriptors Statistics

Liu et al 112 169 CODESSA regression; SVM Constitutional,
  topological descriptors

Training  R  2 : 0.78, 0.86
  Test  R  2 : 0.70, 0.73

Bai et al 113 1260 Classifi cation Regression 
 Tree

LogP, PSA, HBD, HBA, 
 intramolecular
  HB count

79% – 86% correct classifi cation

Turner et al 114 137 CNN Solubility, topological, 
 constitutional, geometric 

RMSe training: 19%; test set: 16%;
  validation: 20%

Zmuidinavicius et al 115 1000 RP Physicochemical, structural 
 descriptors

Classifi cation rate: 85%

Klopman et al 116 417 CASE Substructure RMSe
  training: 12%;
  test set: 12%

Yoshida and Topliss 117 232 Adaptive least-square LogD; differential LogD; 
 constitutional

Classifi cation rate
  training: 71%;
  test set: 67%;
  cross-val: 60%

Andrews et al 118 591 RP; stepwise regression Substructure counts RMSe: ~18%
    *CODESSA indicates comprehensive descriptors for structural and statistical analysis; SVM, support vector machine; PSA, polar surface area; HBD, 
number of hydrogen bond donors; HBA, number of hydrogen bond acceptors; HB, number of hydrogen bond acceptors and donors; CNN, 
computational neural network; RMSe, root-mean-square error; RP, recursive partitioning; CASE, computer automated structure evaluation.    
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 Turner et al 114  used artifi cial neural networks to analyze the 
human bioavailability data for 167 compounds. The model 
was trained with 137 compounds and tested with a further 
15. An additional 15 compounds were used as a validation 
set. This model could distinguish compounds with low and 
high bioavailability. Zmuidinavicius et al 115  analyzed 1000 
druglike compounds with experimental human intestinal 
absorption values using recursive partitioning. They were 
able to achieve 15% false-positives and 3% false-negatives 
classifi cation rates. Klopman et al 116  developed a model 
based on a modifi ed group contribution method using the 
computer automated structure evaluation (CASE) program. 
The data set contained 417 compounds. The model was able 
to predict the percentage of drug absorbed with an  R  2  of 
0.79 and a standard deviation of 12.3% for the compounds 
from the training set. The standard deviation for an external 
test set for 50 drugs was 12.3%. 
 In an earlier work, Yoshida and Topliss 117  analyzed 232 com-
pounds with human bioavailability data. They discovered 
that acids generally had better bioavailability than bases, with 
neutral compounds in between. One interesting idea that 
came out of this observation was the formulation of a new 
parameter, the differential logD (logD6.5-logD7.4), which 
contributed signifi cantly to the bioavailability. The model 
had a correct classifi cation rate of 71%, a cross-validation 
rate of 67%, and a validation rate of 60% for 40 compounds. 
Similarly, Andrews et al analyzed 591 compounds with 
human oral bioavailability. 118  They used substructure count 
descriptors, recursive partitioning, and stepwise regression. 
The model achieved predictions with an RMSe of ~18%. 
 All 3 types of approaches to the modeling of bioavailability 
data have their pros and cons. The rules/alerts often provide 
intuitive and easy ways to think about the issues and help 
guide the chemist ’ s efforts in designing new molecules. 
However, these rules/alerts do not often perform as well as 
the well-validated QSPR models. Thus, QSPR models can 
play a critically important role in virtual screening, com-
pound collection, or library design work. The mechanism-
based PK models can provide mechanistic insights and help 
decipher the components of the oral absorption process. 
Thus, such models often play an important role in the lead 
optimization and candidate selection process. It is highly 
likely that these in silico models will become more robust 
and accurate in the future as more self-consistent data of 
bioavailability become available. Until then, researchers 
have to use these rules/alerts/models with caution and 
should always validate these models with known experi-
mental data before making any critical decisions.   

  CONCLUSION 
 We have attempted to provide a summary of the progress in 
computational modeling of aqueous solubility, Pgp effl ux, 

and absorption. While signifi cant effort continues in model-
ing these critical components of the BCS, much work 
remains in making predictions reliable and thus of impact to 
discovery. During our survey of the literature, very few 
applications of either solubility models or permeability 
models in the prospective design of new compounds were 
uncovered, with the exception of the use of clogP or PSA. 
While it is impossible to identify what has caused this dearth 
of application, we speculate that the primary reasons are 
low prediction reliability and the lack of model interpret-
ability that would provide guidance for chemical synthesis. 
Our personal experience would imply that striving for high 
prediction accuracy, while scientifi cally appealing, is often 
at odds with assembling a model that will appeal to chem-
ists. A better practice is to present interpretable models that 
can provide several testable hypotheses for advancing a 
chemical series. Models of this sort are still absent from the 
literature. 
 To this point, a reliable in silico analog to the BCS is still 
lacking, although great progress has been made at under-
standing the underlying properties. With typical prediction 
accuracies of 1 to 2 orders of magnitude in solubility, and 
comparably high errors of prediction for absorption-related 
parameters, trustworthy computational estimates of the 
maximum absorbable dose still appear out of reach gener-
ally. Nonetheless, as a tool alongside in vitro assays for 
early parameterization of physiologically based pharmaco-
kinetic (PBPK) models, or as a starting point for refi ned 
models of a constrained series of chemical analogs, solubil-
ity and absorption models play an increasingly important 
role in drug discovery.    
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